Preliminary communication

APPROACHES TO ETHYL(PENTAMETHYLCYCLOPENTADIENYL)-RHODIUM OR -IRIDIUM COMPLEXES

AMELIO VÁZQUEZ DE MIGUEL and PETER M. MAITLIS* Department of Chemistry, The University, Sheffield S3 7HF (Great Britain) (Received December 17th, 1982)

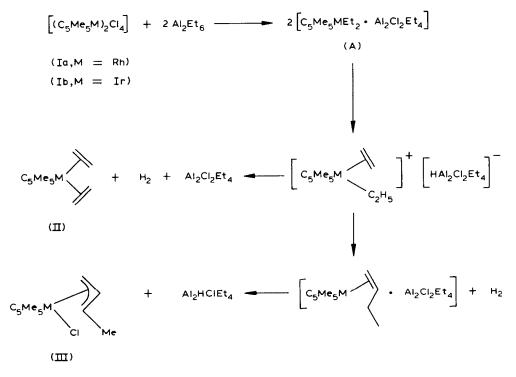
Summary

Reaction of $[(C_5Me_5M)_2Cl_4]$ (M = Rh or Ir) with Al₂Et₆ gives $[C_5Me_5M-(C_2H_4)_2]$ and some $[C_5Me_5MCl(\eta^3-CH_2CHCHMe)]$ but $[C_5Me_5RhEt_2(PMe_3)]$ is obtained from the reaction of $[C_5Me_5RhCl_2(PMe_3)]$ with Al₂Et₆.

We have recently reported on reactions of $[(C_5Me_5M)_2Cl_4]$ (Ia, M = Rh; Ib, M = Ir) with Al₂Me₆ to give a variety of novel complexes including $[C_5Me_5IrMe_4]$ [1], $[(C_5Me_5Rh)_2Me_2(\mu-CH_2)_2]$ [2], $[(C_5Me_5Ir)_2Me_2(\mu-CH_2)_2]$ [3] and $[(C_5Me_5Rh)_3(\mu_3-CH)_2]$ [4]. Most of these products resulted from unusual redox processes, at least one of which is now understood [2], on the first-formed species, $C_5Me_5MMe_2MeAIMeCl_6AIMe_2$. It was therefore of interest to compare these methylations with the reactions of Ia or Ib with Al₂Et₆.

Under conditions essentially identical to those used previously for reactions with Al_2Me_6 , Ia reacted with Al_2Et_6 (molar ratio, 1/5) in benzene to give a dark brown solution. After work-up and chromatography on Florisil in hexane, the major product (31%) was identified as the known bis-ethylene complex $[C_5Me_5Rh-(C_2H_4)_2]$ (IIa)* [5]. In addition a small amount (ca. 1%) of the η^3 -1-methylallyl complex $[C_5Me_5RhCl(CH_2CHCHMe)]$ (IIIa) was also isolated. A number of variations involving different reagent ratios, solvents, temperatures and work-up procedures were tried but they gave the same products in similar amounts**.

Reaction of the iridium complex Ib with 3.6 equivalents of Al₂Et₆ in benzene


^{*}NMR spectra $[C_{g}Me_{g}Rh(C_{2}H_{4})_{2}]$, ¹³C (CDCl₃), δ 96.6 ($C_{g}Me_{5}$, d, J(Rh-C) 5.3 Hz), 43.8 ($C_{2}H_{4}$, d, J(Rh-C) 13.7 Hz) and 9.2 ($C_{g}Me_{5}$, s) ppm. $[C_{5}Me_{5}Ir(C_{2}H_{4})_{2}]$, ¹³C (CDCl₃), δ 92.5 ($C_{5}Me_{5}$), 24.1 ($C_{2}H_{4}$), and 8.8 ($C_{g}Me_{5}$) ppm.

^{**}Attempts to detect ethyl-rhodium or -iridium complexes such as A (Scheme 1) by ¹³C NMR spectroscopy at -90°C have not yet been successful. It appears that such species are unstable even under these conditions.

at 20°C proceeded similarly to give 21% of $[C_{s}Me_{s}Ir(C_{2}H_{4})_{2}]$ (IIb) and 2% of $[C_{s}Me_{s}IrCl(CH_{2}CHCHMe)]$ (IIIb).

However, a diethylrhodium complex, the compound $[C_5Me_5RhEt_2(PMe_3)]$ (IV) was obtained (24% after purification by chromatography) by reaction of $[C_5Me_5RhCl_2(PMe_3)]$ with 1.4 equivalents of Al_2Et_6 in benzene. (Anal. Found: C, 54.6, H, 8.7, Mol. wt. (mass-spectroscopic) 372. $[C_5Me_5RhEt_2(PMe_3)]$ calcd.: C, 54.8, H, 9.2%. Mol. wt. 372. ¹H NMR (220 MHz, C_6H_6), δ 1.91 (dd, PMe₃, J(P-H) = 8.2, J(Rh-H) = 0.7 Hz), 1.94 (m, Rh CH_2), 2.61 (t, Rh CH_2CH_3 , J(H-H) 7.3 Hz), 3.29 (d, C_5Me_5 , J(P-H) 2.2 Hz) ppm. ¹³C NMR (100 MHz, C_6D_6), δ 8.76 (m, Rh- CH_2), 9.79 (s, C_5Me_5), 14.86 (d, PMe₃, J(P-C) 27.5 Hz), 19.0 (s, Rh- CH_2CH_3) and 97.32 (dd, C_5Me_5 , J(P-C) 2.3, J(Rh-C) 3.8 Hz) ppm.

Clearly the reason for the difficulty in isolating ethyl complexes or analogues of the μ_2 -methylene or μ_3 -methyne complexes from reaction of I and Al₂Et₆ is due to the high tendency of initially formed species such as A to undergo β elimination in the absence of a strongly bonded ligand L. When a strong ligand such as trimethylphosphine is present then a diethylrhodium complex, for example IV, can be isolated. The routes leading to products II and III may be described as shown in Scheme 1.

SCHEME 1

We thank the Spanish Ministry of Education and the SERC for support, Johnson-Matthey and Ethyl Corporation for chemicals and Drs. M. Gomez and B.E. Mann for help with some of the experiments.

- 1 K. Isobe, P.M. Bailey, and P.M. Bailey, J. Chem. Soc., Chem. Commun., (1981) 808.
- K. Isobe, D.G. Andrews, B.E. Mann, and P.M. Maitlis, J. Chem. Soc., Chem. Commun., (1981) 809;
 A. Vázquez de Miguel, K. Isobe, B.F. Taylor, A. Nutton, and P.M. Maitlis, ibid., (1982) 758; K. Isobe,
- A. Vázquez de Miguel, and P.M. Maitlis, J. Chem. Soc., Dalton Trans., in press.
 3 K. Isobe, A. Vázquez de Miguel, and P.M. Maitlis, J. Organometal. Chem., in press.
- 4 K. Isobe, A. Vázquez de Miguel, P.M. Bailey, and P.M. Maitlis, Organometallics, 1 (1982) 1604.
- 5 K. Moseley, J.W. Kang, and P.M. Maitlis, J. Chem. Soc. A, (1970) 2875.